गेम थ्योरी दो या दो से अधिक खिलाड़ियों के बीच निर्धारित नियमों और परिणामों वाली रणनीतिक बातचीत को मॉडलिंग करने की प्रक्रिया है। कई विषयों में उपयोग किए जाने के दौरान, गेम थ्योरी को अर्थशास्त्र के अध्ययन के भीतर एक उपकरण के रूप में सबसे अधिक उपयोग किया जाता है। खेल सिद्धांत का आर्थिक अनुप्रयोग उद्योगों, क्षेत्रों और दो या अधिक फर्मों के बीच किसी भी रणनीतिक बातचीत के मूलभूत विश्लेषण में सहयोगी के लिए एक महत्वपूर्ण उपकरण हो सकता है।
यहां, हम गेम थ्योरी और इसमें शामिल शर्तों पर एक परिचयात्मक नज़र डालेंगे, और आपको गेम को हल करने की एक सरल विधि से परिचित कराएंगे, जिसे बैकएंड इंडक्शन कहा जाता है।
गेम थ्योरी परिभाषाएँ
किसी भी समय हमारे पास दो या अधिक खिलाड़ियों के साथ एक स्थिति होती है जिसमें ज्ञात भुगतान या मात्रात्मक परिणाम शामिल होते हैं, हम सबसे संभावित परिणामों को निर्धारित करने में मदद करने के लिए गेम थ्योरी का उपयोग कर सकते हैं।
खेल सिद्धांत के अध्ययन में आमतौर पर उपयोग किए जाने वाले कुछ शब्दों को परिभाषित करके शुरू करते हैं:
- खेल: परिस्थितियों का कोई भी सेट जिसके परिणामस्वरूप दो और निर्णयकर्ताओं (खिलाड़ियों) के कार्यों पर निर्भर होता है। खिलाड़ी: खेल के संदर्भ में एक रणनीतिक निर्णय लेने वाला। रणनीति: एक खिलाड़ी की पूरी योजना खेल के भीतर उत्पन्न होने वाली परिस्थितियों के सेट को ले जाएगी। अदायगी: पेआउट एक खिलाड़ी को एक विशेष परिणाम पर पहुंचने से प्राप्त होता है। पेआउट किसी भी मात्रात्मक रूप में, डॉलर से उपयोगिता तक हो सकता है। सूचना सेट: खेल में दिए गए बिंदु पर उपलब्ध जानकारी। जब गेम में अनुक्रमिक घटक होता है, तो शब्द सेट की जानकारी सबसे अधिक लागू होती है। संतुलन: एक खेल का वह बिंदु जहाँ दोनों खिलाड़ियों ने अपने निर्णय लिए हैं और एक नतीजे पर पहुँचे हैं।
खेल सिद्धांत में मान्यताओं
अर्थशास्त्र में किसी भी अवधारणा के साथ, तर्कसंगतता की धारणा है। अधिकतमकरण की एक धारणा भी है। यह माना जाता है कि खेल के भीतर खिलाड़ी तर्कसंगत हैं और खेल में अपने भुगतान को अधिकतम करने का प्रयास करेंगे।
जब पहले से सेट किए गए गेम की जांच करते हैं, तो यह आपकी ओर से माना जाता है कि सूचीबद्ध भुगतान में उस परिणाम से जुड़े सभी भुगतानों का योग शामिल है। यह किसी भी "क्या होगा अगर" सवाल उठता है को बाहर करेगा।
एक खेल में खिलाड़ियों की संख्या सैद्धांतिक रूप से अनंत हो सकती है, लेकिन अधिकांश खेलों को दो खिलाड़ियों के संदर्भ में रखा जाएगा। सबसे सरल खेलों में से एक क्रमिक खेल है जिसमें दो खिलाड़ी शामिल होते हैं।
बैकवर्ड इंडक्शन का उपयोग करके अनुक्रमिक खेलों को हल करना
नीचे दो खिलाड़ियों के बीच एक सरल अनुक्रमिक खेल है। उनके भीतर प्लेयर 1 और प्लेयर 2 के साथ लेबल क्रमशः एक या दो खिलाड़ियों के लिए सूचना सेट हैं। पेड़ के नीचे कोष्ठक में संख्या प्रत्येक संबंधित बिंदु पर अदायगी है। खेल भी अनुक्रमिक है, इसलिए खिलाड़ी 1 पहला निर्णय (बाएं या दाएं) करता है और खिलाड़ी 2 खिलाड़ी 1 (ऊपर या नीचे) के बाद अपना निर्णय लेता है।
जूली बैंग द्वारा इमेज © इन्वेस्टोपेडिया 2019
बैकवर्ड इंडक्शन, सभी खेल सिद्धांत की तरह, तर्कसंगतता और अधिकतमकरण की मान्यताओं का उपयोग करता है, जिसका अर्थ है कि प्लेयर 2 किसी भी स्थिति में अपने भुगतान को अधिकतम करेगा। या तो सूचना सेट पर, हमारे पास दो विकल्प हैं, सभी में चार। प्लेयर 2 को चुनने वाले विकल्पों को समाप्त करके, हम अपने पेड़ को संकीर्ण कर सकते हैं। इस तरह, हम उन लाइनों को बोल्ड करेंगे जो दिए गए सूचना सेट पर खिलाड़ी के भुगतान को अधिकतम करते हैं।
जूली बैंग द्वारा इमेज © इन्वेस्टोपेडिया 2019
इस कमी के बाद, खिलाड़ी 1 अब अपने भुगतान को अधिकतम कर सकता है, जिससे प्लेयर 2 के विकल्प ज्ञात हों। परिणाम खिलाड़ी के पिछड़े प्रेरण द्वारा पाया गया एक संतुलन है जिसे "सही" और प्लेयर 2 को "अप" चुनना है। नीचे बोल्ड में संतुलन के साथ खेल का समाधान है।
जूली बैंग द्वारा इमेज © इन्वेस्टोपेडिया 2019
उदाहरण के लिए, कोई भी आसानी से खिलाड़ियों के रूप में कंपनियों के उपयोग से ऊपर एक गेम स्थापित कर सकता है। इस गेम में उत्पाद रिलीज़ परिदृश्य शामिल हो सकते हैं। यदि कंपनी 1 उत्पाद जारी करना चाहती है, तो कंपनी 2 की प्रतिक्रिया में क्या कर सकती है? क्या कंपनी 2 एक समान प्रतिस्पर्धी उत्पाद जारी करेगी?
विभिन्न परिदृश्यों में इस नए उत्पाद की बिक्री का पूर्वानुमान लगाकर, हम यह अनुमान लगाने के लिए एक गेम सेट कर सकते हैं कि ईवेंट कैसे सामने आ सकते हैं। नीचे एक उदाहरण है कि कोई इस तरह के खेल का मॉडल कैसे बना सकता है।
जूली बैंग द्वारा इमेज © इन्वेस्टोपेडिया 2019
तल - रेखा
गेम थ्योरी के सरल तरीकों का उपयोग करके, हम यह हल कर सकते हैं कि वास्तविक दुनिया की स्थिति में परिणामों की भ्रामक सरणी क्या होगी। वित्तीय विश्लेषण के लिए एक उपकरण के रूप में गेम थ्योरी का उपयोग करना विलय से उत्पाद के रिलीज तक संभावित रूप से गड़बड़ वास्तविक दुनिया स्थितियों को सुलझाने में बहुत मददगार हो सकता है।
